
LLNL-CONF-461652

ClusteringWiki: Personalized and
Collaborative Clusteringof
Search Results

D. C. Anastasiu, D. J. Buttler, B. J. Gao

November 4, 2010

World Wide Web
Hyderabad, India
March 28, 2011 through April 1, 2011

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

ClusteringWiki: Personalized and Collaborative Clustering
of Search Results

David C. Anastasiu
Texas State University-San

Marcos
San Marcos, TX, USA

da1143@txstate.edu

David Buttler
Lawrence Livermore National

Laboratory
Livermore, CA, USA
buttler1@llnl.gov

Byron J. Gao
Texas State University-San

Marcos
San Marcos, TX, USA
bgao@txstate.edu

ABSTRACT
How to organize and present search results plays a critical
role in the utility of search engines. Due to the unprece-
dented scale of the Web and diversity of search results, the
common strategy of ranked lists has become increasingly in-
adequate, and clustering has been considered as a promising
alternative. Clustering divides a long list of disparate search
results into a few topic-coherent clusters, allowing the user
to quickly locate relevant results by topic navigation. While
many clustering algorithms have been proposed that inno-
vate on the automatic clustering procedure, we introduce
ClusteringWiki, the first prototype and framework for per-
sonalized clustering that allows direct user editing of the
clustering results. Through a Wiki interface, the user can
edit and annotate the membership, structure and labels of
clusters for a personalized presentation. In addition, the
edits and annotations can be shared among users as a mass-
collaborative way of improving search result organization
and search engine utility.

1. INTRODUCTION
The way search results are organized and presented has a

direct and significant impact on the utility of search engines.
The common strategy has been using a flat ranked list, which
works fine for homogeneous search results.
However, queries are inherently ambiguous and search re-

sults are often diverse with multiple senses. With a list
presentation, the results on different sub-topics of a query
will be mixed together. The user has to sift through many
irrelevant results to locate those relevant ones.
With the rapid growth in the scale of the Web, queries

have become more ambiguous than ever. For example, there
are more than 20 entries in Wikipedia for different renown
individuals under the name of Jim Gray.
Consequently, the diversity of search results has increased

to the point that we must consider alternative presenta-
tions, providing additional structure to flat lists so as to
effectively minimize browsing effort and alleviate informa-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

tion overload [4, 10, 2]. Over the years clustering has been
accepted as the most promising alternative.

Clustering is the process of organizing objects into groups
or clusters that exhibit internal cohesion and external iso-
lation. Based on the common observation that it is much
easier to scan a few topic-coherent groups than many in-
dividual documents, clustering can be used to categorize a
long list of disparate search results into a few clusters such
that each cluster represents a homogeneous sub-topic of the
query. Meaningfully labeled, these clusters form a topic-wise
non-predefined, faceted search interface, allowing the user to
quickly locate relevant and interesting results. There is good
evidence that clustering improves user experience and search
result quality [7].

Given the significant potential benefits, search result clus-
tering has received increasing attention in recent years from
the communities of information retrieval, Web search and
data mining [4, 10, 5, 9, 6]. In the industry, well-known com-
mercial clustering search engines include Clusty (www.clusty.
com), iBoogie (www.iboogie.com) and CarrotSearch (carrot-
search.com).

Despite the high promise of the approach and a decade
of endeavor, cluster-based search engines have not gained
prominent popularity, evident by Clusty’s Alexa rank. This
is because clustering is known to be a hard problem, and
search result clustering is particularly hard due to its high
dimensionality, complex semantics and unique additional re-
quirements beyond traditional clustering.

As emphasized in [9] and [2], the primary focus of search
result clustering is NOT to produce optimal clusters, an ob-
jective that has been pursued for decades for traditional clus-
tering with many successful automatic algorithms. Search
result clustering is a highly user-centric task with two unique
additional requirements. First, clusters must form interest-
ing sub-topics or facets from the user’s perspective. Second,
clusters must be assigned informative, expressive, meaning-
ful and concise labels. Automatic algorithms often fail to ful-
fill the human factors in the objectives of search result clus-
tering, generating meaningless, awkward or nonsense cluster
labels [2].

In this paper, we explore a completely different direc-
tion in tackling the problem of clustering search results,
utilizing the power of direct user intervention and mass-
collaboration. We introduce ClusteringWiki, the first pro-
totype and framework for personalized clustering that allows
direct user editing of the clustering results. This is in sharp
contrast with existing approaches that innovate on the au-
tomatic algorithmic clustering procedure.

Figure 1: Snapshot of ClusteringWiki.

In ClusteringWiki, the user can edit and annotate the
membership, structure and labels of clusters through a Wiki
interface to personalize her search result presentation. Such
edits and annotations can be implicitly shared among users
as a mass-collaborative way of improving search result orga-
nization and search engine utility. This approach is in the
same spirit of the current trends in the Web, like Web 2.0,
semantic web, personalization and mass collaboration.
Clustering algorithms fall into two categories: partition-

ing and hierarchical. Regarding clustering results, however,
a hierarchical presentation generalizes a flat partition. Based
on this observation, ClusteringWiki handles both cluster-
ing methods smoothly by providing editing facilities for clus-
ter hierarchies and treating partitions as a special case. In
practice, hierarchical methods are advantageous in cluster-
ing search results because they construct a topic hierarchy
that allows the user to easily navigate search results at dif-
ferent levels of granularity.
Figure 1 shows a snapshot of ClusteringWiki. The left-

hand label panel presents a hierarchy of cluster labels. The
right-hand result panel presents search results for a chosen
cluster label. A logged-in user can edit the current clusters
by creating, deleting, modifying, moving or copying nodes
in the cluster tree. Each edit will be validated against a set
of predefined consistency constraints before being stored.
Designing and implementing ClusteringWiki pose non-

trivial technical challenges. User edits represent user prefer-
ences or constraints that should be respected and enforced
next time the same query is issued. Query processing is
time-critical, thus efficiency must be given high priority in
maintaining and enforcing user preferences. Moreover, com-
plications also come from the dynamic nature of search re-
sults that constantly change over time.
Cluster editing takes user effort. It is essential that such

user effort can be properly reused. ClusteringWiki con-
siders two kinds of reuse scenarios, preference transfer and
preference sharing. The former transfers user preferences
from one query to similar ones, e.g., from “David J. Dewitt”
to “David Dewitt”. The latter aggregates and shares clus-
tering preferences among users. Proper aggregation allows
users to collaborate at a mass scale and “vote” for the best
search result clustering presentation.

Contributions. (1) We introduce ClusteringWiki, the
first framework for personalized clustering in the context
of search result organization. (2) ClusteringWiki allows

query q Query

Processing

Module

Cluster

Editing

Module

cluster

tree T

stored user

preferences

edit e

Figure 2: Main architecture of ClusteringWiki.

direct user editing of the clustering results through a Wiki
interface, where user preferences are reused among similar
queries as well as shared among users as a mass-collaborative
way of improving search result organization and search en-
gine utility. (3) We implement a prototype for Cluster-

ingWiki, perform experimental evaluation and a user study,
and maintain the prototype as a public Web service.

2. OVERVIEW
In this section, we overview the ClusteringWiki frame-

work. Detailed descriptions of the framework and imple-
mentation can be found at [1]. As shown in Figure 2, the
query processing module takes a query q and a set of stored
user preferences as input to produce a cluster tree T that
respects the preferences. The cluster editing module takes a
cluster tree T and a user edit e as input to create/update a
set of stored user preferences. Each user editing session usu-
ally involves a series of edits. The processing-editing cycle
recurs over time.

Query processing. ClusteringWiki takes a query q from
a user u and retrieves the search results R from a data source
(e.g., Google). Then, it clusters R with a default clustering
algorithm (e.g., frequent phrase hierarchical) to produce an
initial cluster tree Tinit. Then, it applies P , an applicable set
of stored user preferences, to Tinit and presents a modified
cluster tree T that respects P .

Note that ClusteringWiki performs clustering. The mod-
ification should not alter R, the input data.

If the user u is logged-in, P will be set to Pq,u, a set of
preferences for q previously specified by u. In case Pq,u = ∅,
Pq′,u will be used on condition that q′ is sufficiently close
to q. If the user u is not logged-in, P will be set to Pq,U ,
a set of aggregated preferences for q previously specified by
all users. In case Pq,U = ∅, Pq′,U will be used on condition
that q′ is sufficiently close to q.

In the cluster tree T , the internal nodes, i.e., non-leaf
nodes, contain cluster labels and are presented on the left-
hand label panel. Each label is a set of keywords. The leaf
nodes contain search results, and the leaf nodes for a selected
label are presented on the right-hand result panel. A search
result can appear multiple times in T . The root of T repre-
sents the query q itself and is always labeled with All. When
it is chosen, all search results will be presented on the result
panel. Labels other than All represent the various, possibly
overlapping, sub-topics of q. When there is no ambiguity,
internal node, label node, cluster label and label are used in-
terchangeably in the paper. Similarly, leaf node, result node,
search result and result are used interchangeably.

The search results for a chosen label are presented in the
result panel in their original order when retrieved from the
source. Sibling cluster labels in the label panel are ordered
by lexicographically comparing the lists of original ranks of

All

A

B

C

D

P1

P2

P3

P4

P1

P5

Figure 3: Example cluster tree.

their associated search results. For example, let A and D
be two sibling labels as in Figure 3, where A contains P1,
P2, P3 and P4 and D contains P1 and P5. Suppose that i
in Pi indicates the original rank of Pi from the source. By
comparing two lists < 1, 2, 3, 4 > and < 1, 5 >, we put A in
front of D. “Other” is a special label that is always listed at
the end behind all its siblings.

Cluster editing. If logged-in, a user u can edit the cluster
tree T for query q by creating, deleting, modifying, moving
or copying nodes. User edits will be validated against a set
C of consistency constraints before being written to Pq,u.
The set C contains predefined constraints that are speci-

fied on, for example, the size of clusters, the height of the tree
and the length of labels. These constraints exist to maintain
a favorable user interface for fast and intuitive navigation.
The cluster tree T is consistent if it satisfies all the con-
straints in C.
In particular, ClusteringWiki implements the following

categories of atomic primitive edits. With a series of such
edits, a user can produce any consistent cluster tree.

• e1: copy a label node to another non-bottom label node
as its child. E.g., in Figure 3, we can copy D to A. We
call a label node a bottom label node if it directly connects
to search results.

• e2: copy a result node to a bottom label node. E.g., in
Figure 3, we can copy P3 to D, but not to A, which is not
a bottom label node.

• e3: modify a non-root label node. E.g., in Figure 3, we
can modify D to E.

• e4: delete a non-root node, which can be either a label
node or a result node. E.g., in Figure 3, we can delete P5.

• e5: create a label node, which can be either a non-bottom
or bottom label node. In particular, recursive creation of
non-bottom labels is a way to add levels to cluster trees.
In Figure 3, we can add E as parent of D.

Note that, user editing can possibly generate empty labels,
i.e., labels that do not contain any search results and thus
not on any path. Such labels will be trimmed.
To add convenience, ClusteringWiki also implements sev-

eral other types of edits. For example, move (instead of copy
as in e1) a label node to another non-bottom label node as
its child, or move (instead of copy as in e2) a result node to
a bottom label node. Such a move edit can be considered as
a copy edit followed by a delete edit.
By combining preferences in Pq,u for all users who have

edited the cluster tree T for query q, we obtain Pq,U , a set of
aggregated preferences for query q. We use Pu to denote the
collection of clustering preferences by user u for all queries,
which is a set of sets of preferences such that ∀q, Pq,u ∈

Pu. We also use PU to denote the collection of aggregated
preferences by all users for all queries, which is a set of sets
of aggregated preferences such that ∀q, Pq,U ∈ PU . Pu and
PU are maintained over time and used by ClusteringWiki

in processing queries for the user u.

Design principles. In a search result clustering engine,
there are significant uncertainties from the data to the clus-
tering algorithm. Wiki-facilitated personalization further
adds substantial complications. Simplicity should be a key
principle in designing such a complex system. Clustering-
Wiki adopts a simple yet powerful path approach.

With this approach, a cluster tree T is decomposed into
a set of root-to-leaf paths that serve as independent editing
components. A path always starts with All (root) and ends
with some search result (leaf). In ClusteringWiki, main-
tenance, aggregation and enforcement of user preferences
are based on simple path arithmetic. Moreover, the path
approach is sufficiently powerful, being able to handle the
finest user preference for a cluster tree.

In particular, each edit of T can be interpreted as oper-
ations on one or more paths. There are two primitive op-
erations on a path p, insertion of p and deletion of p. A
modification of p to p′ is simply a deletion of p followed by
an insertion of p′.

For each user u and each query q, ClusteringWiki main-
tains a set of paths Pq,u representing the user edits from
u for query q. Each path p ∈ Pq,u can be either positive
or negative. A positive path p represents an insertion of p,
meaning that the user prefers to have p in T . A negative
path −p represents a deletion of p, meaning that the user
prefers not to have p in T . Two opposite paths p and −p
will cancel each other out. The paths in Pq,u may be added
from multiple editing sessions at different times.

To aggregate user preferences for query q, Clustering-
Wiki first combines the paths in all Pq,u, u ∈ U , where U is
the set of users who have edited the cluster tree of q. Then,
certain statistically significant paths are selected and stored
in Pq,U .

Suppose in processing query q, P is identified as the ap-
plicable set of paths to enforce. ClusteringWiki first com-
bines the paths in P and the paths in Tinit, where Tinit is
the initial cluster tree. Then, it presents the combined paths
as a tree, which is the cluster tree T . The combination is
straightforward. For each positive p ∈ P , if p /∈ Tinit, add
p to Tinit. For each negative p ∈ P , if p ∈ Tinit, remove p
from Tinit.

Reproducibility. It is easy to verify that Clustering-

Wiki has the property of reproducing edited cluster trees.
In particular, after a series of user edits on Tinit to produce
T , if Tinit remains the same in a subsequent query, exactly
the same T will be produced after enforcing the stored user
preferences generated from the user edits on Tinit.

3. DEMONSTRATION
ClusteringWiki 1 was implemented as an AJAX-enabled

Java Enterprise Edition 1.5 application. The prototype is
maintained on an average PC with Intel Pentium 4 3.4 GHz
CPU and 4Gb RAM running Apache Tomcat 6.

We have conducted a comprehensive experimental evalu-
ation on the correctness, efficiency, utility (by a paid user

1dmlab.cs.txstate.edu/ClusteringWiki.

study) and usability of ClusteringWiki. A complete report
can be found at [1]. In the following, we focus on a guided
demonstration of the services and functionality of the Clus-
teringWiki prototype.

Services and functionality. ClusteringWiki provides
search service using multiple data sources, including Google
AJAX Search API (code.google.com/apis/ajaxsearch), Ya-
hoo! Search API (developer.yahoo.com/search/web/ web-
Search.html), and local Lucene indexes built on top of the
New York Times Annotated Corpus [8] and several datasets
from the TIPSTER (disks 1-3) and TREC (disks 4-5) collec-
tions (www.nist.gov/tac/data/data desc.html). The Google
API can retrieve a maximum of 8 results per request and a
total of 64 results per query. The Yahoo! API can retrieve a
maximum of 100 results per request and a total of 1000 re-
sults. Due to user licence agreements, the New York Times,
TIPSTER and TREC datasets are not available publicly.
ClusteringWiki facilitates four built-in clustering algo-

rithms: k-means flat, k-means hierarchical, frequent phrase
flat and frequent phrase hierarchical. The hierarchical al-
gorithms recursively apply their flat counterparts in a top-
down manner to large clusters. These algorithms build an
initial cluster tree based on 50 to 500 search results (snippets
and titles) retrieved from a data source.
The k-means algorithms follow a strategy that generates

clusters before labels. They use a simple approach to gen-
erate cluster labels from titles of search results that are the
closest to cluster centers. The parameter k is heuristically
determined based on the size of the input.
The frequent phrase algorithms follow a strategy that gen-

erates labels before clusters. The labels are selected frequent
phrases extracted from a suffix tree. A search result r be-
longs to a label L if r contains the keywords in L. These
algorithms are able to generate very meaningful labels.
Based on the initial cluster tree, the main functionality

provided by ClusteringWiki includes clustering personal-
ization, clustering aggregation and preference transfer, to
be described in the following.

Demonstration scenarios. After login, you are able to
personalize a cluster tree for a query, e.g. “Sergey Brin”.
You can edit the tree labels in the label panel by renaming,
creating, copying, moving and deleting labels. You can also
re-assign the cluster membership of search results by copy,
move and delete operations.
These edits must conform to a predefined set of consis-

tency constraints. To reduce user editing effort, cluster ed-
its in ClusteringWiki are available through context menus
attached to labels and results, and only pre-validated opera-
tions will be made available. You can drag and drop a result
or a label in addition to cutting and pasting to perform a
move operation. Edited labels and results are marked by a
red asterisk.
To verify that ClusteringWiki retains personal prefer-

ences, you can log out, log in, and issue the same query.
You should see your previous edits have been incorporated
into the cluster tree. This personalized cluster tree should
allow you to explore the search results more effectively.
To demonstrate aggregated clustering, ClusteringWiki

lists the top 10 queries that have been edited by the most
users. You (without login) can choose some of these queries
and observe how the aggregated trees differ from the initial
trees. While they may not contain direct personal edits,

these aggregated trees should reflect the collaborative effort
and common preferences of many users. You should bene-
fit from the “voted” tree without any cost of editing effort.
To test how ClusteringWiki behaves in aggregating edits,
you can also create multiple accounts, log in, issue the same
query, edit the cluster trees using each account, and then
log out and examine the aggregated tree.

Cluster editing takes user effort. ClusteringWiki attempts
to reuse such effort as much as possible. While preference
aggregation can be considered sharing among users, prefer-
ence transfer is sharing among queries. In ClusteringWiki,
preference transfer is executed regardless of your login sta-
tus. When logged in, your personal preferences of a similar
query are transferred. When logged out, the aggregated
preferences are transferred. For example, you can issue a
query “Sergey Brin” and edit the cluster tree. Then you
can issue a similar query “Sergey M. Brin” and observe how
those stored preferences for “Sergey Brin” are enforced in
producing the cluster tree for “Sergey M. Brin”.

4. CONCLUSION
There are many interesting directions for future work,

from fundamental semantics and functionalities of the frame-
work to convenience features, user interface and scalability.
One particular interesting direction is to seamlessly integrate
the Wiki-style personalization of search results [3] with the
personalization of search result clusters, providing a more
complete solution for personalized and collaborative infor-
mation retrieval and Web search.

5. ACKNOWLEDGMENTS
This work (LLNL-CONF-461652) was performed under the

auspices of the U.S. Department of Energy by Lawrence Liver-

more National Laboratory under Contract DE-AC52-07NA27344.

6. REFERENCES
[1] Clusteringwiki technical report.

dmlab.cs.txstate.edu/ClusteringWiki/pdf/cw.pdf, 2010.

[2] C. Carpineto, S. Osiński, G. Romano, and D. Weiss. A
survey of web clustering engines. ACM Comput. Surv.,
41(3):1–38, 2009.

[3] B. J. Gao and J. Jan. Rants: a framework for rank
editing and sharing in web search. In WWW, 2010.

[4] M. A. Hearst and J. O. Pedersen. Reexamining the
cluster hypothesis: scatter/gather on retrieval results.
In SIGIR, 1996.

[5] K. Kummamuru, R. Lotlikar, S. Roy, K. Singal, and
R. Krishnapuram. A hierarchical monothetic
document clustering algorithm for summarization and
browsing search results. In WWW, 2004.

[6] J. Lee, S.-w. Hwang, Z. Nie, and J.-R. Wen. Query
result clustering for object-level search. In KDD, 2009.

[7] C. D. Manning, P. Raghavan, and H. Schtze.
Introduction to Information Retrieval. Cambridge
University Press, 2008.

[8] E. Sandhaus. The New York Times Annotated Corpus.
Linguistic Data Consortium, Philadelphia, 2008.

[9] X. Wang and C. Zhai. Learn from web search logs to
organize search results. In SIGIR, 2007.

[10] O. Zamir and O. Etzioni. Grouper: a dynamic
clustering interface to web search results. In WWW,
1999.

